Bayesian Validation of Fuzzy Clustering for Analysis of Yeast Cell Cycle Data
نویسندگان
چکیده
Clustering for the analysis of the gene expression profiles has been used for identifying the functions of the genes and of unknown genes. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods. However, it is still required to devise natural way to measure the quality of the cluster partitions that are obtained by fuzzy clustering. In this paper, a Bayesian validation method of selecting a fuzzy partition with the largest posterior probability given the dataset is proposed to evaluate the fuzzy partitions effectively. Analysis of yeast cell-cycle data follows to show the usefulness of the proposed method.
منابع مشابه
Fuzzy Bayesian validation for cluster analysis of yeast cell-cycle data
Clustering for the analysis of the genes organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster and analyzing the functions of unknown genes. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assi...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملEvolutionary Clustering Algorithm with Knowledge-Based Evaluation for Fuzzy Cluster Analysis of Gene Expression Profiles
Clustering method, which groups thousands of genes by their similarities of expression levels, has been used for identifying unknown functions of genes. Fuzzy clustering method that is one category of clustering assigns one sample to multiple groups according to their membership degrees. It is more appropriate than hard clustering algorithms for analyzing gene expression profiles since single g...
متن کامل